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Abstract—In this work we present a new alternate way to
formulate the finite element method (FEM) for parallel processing
based on the solution of single mesh elements. The key idea
is to decouple the solution of a single element from that of
the whole mesh, thus exposing parallelism at the element level.
Individual element solutions are then superimposed node-wise
using a weighted sum over concurrent nodes. A classic 2D
electrostatic problem is used to validate the proposed method
obtaining accurate results. The original mesh was refined tostudy
the iterations scaling behavior, which proved to grow linearly with
the number of elements. A 13 times speedup was observed for a
GPU implementation over a sequential CPU version.

I. I NTRODUCTION

Solving increasingly complex electromagnetic (EM) prob-
lems using modern computing resources inevitably requires
employing parallel programming paradigms in response to the
current trend of advances in microprocessor architecture.The
advent of the multicore/manycore processors brings about an
important turning point in programming practices; in particu-
lar, for EM practitioners and the scientific community in gen-
eral this translates to rewriting legacy libraries and applications
in parallel terms to efficiently realize the performance bene-
fits offered by these modern computing resources as shown
recently in [1], [2]. This work focuses on the finite element
method (FEM), a popular numerical simulation technique, and
proposes an alternate way to solving the linear systems derived
that is well suited for parallel manycore implementations.

II. N EW FEM SINGLE ELEMENT SOLUTION METHOD

The classic FEM formulation can be thought of as a seven
step process as shown in Fig. 1. Traditionally, the solutionof
FEM has been parallelized in three ways: a) partitioning and
solving in parallel the derived algebraic system [1]–[3]; b)
employing domain decomposition techniques [3]–[5]; and c)
using multigrid techniques [5]. However, a greater amount of
parallelism is sought to take advantage of the aforementioned
manycore trend. Thereof, we propose to decouple the element
solution from that of the whole mesh by directly computing
on the element stiffness matrices concurrently going from
step three to five in Fig. 1, each subject to boundary con-
ditions. Such disconnected solutions are then averaged node-
wise using a weighted sum over all concurrent nodes in an
iterative fashion until convergence is achieved. Furthermore,
this approach does not require building a global coefficient
matrix skipping step four in Fig.1. A similar approach was
proposed in [6] where the solution is computed by nodes. The

Fig. 1. Steps in the classic finite element method (FEM).

mathematical formulation for the proposed decoupled single
element solution (FEM-SES) approach is presented next.

A. Mathematical Formulation

Equations (1-3) present the classic FEM variational formu-
lation for a static EM boundary value problem that will be
used for simplicity, without loss of generality. HereF (ϕ)
represents the functional to minimize,ϕ the unknowns and
p the boundary conditions (BC) applied.

δF (ϕ) = 0 (1)
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The functional can then be applied to each element in the
discretized domain as shown in (4-5) where the superscripte

refers to the element index.
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Next the local functionals are minimized and BCs are enforced
element-wise independently, see equation (6). This is where
the new method departs from the classic FEM.

{
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}

BC reduced

= {Ke} {ϕe} − {be} = {Ø} (6)

To obtain the global solution from (6) a2-step iterative
relaxation approach is proposed. As presented in Fig.2, the
first step updates the local element solutions independently
using a relaxation method and the second step couples the
local solutions using a weighted average to produce the global



Fig. 2. 2-step iterative relaxation method: Step-1 shows update rationale for
elements with or without BCs and Step-2 shows a weighted average example.

iterate. Finally, a convergence check is performed to either exit
or repeat the process.

B. Sources of Parallelism, Advantages and Disadvantage

Sources of parallelism identified in the new approach are:
• Element stiffness matrices can be built in parallel and

preserved in distributed CPU/cores to be computed later.
• Elements solutions may be computed in parallel indepen-

dently of any other element.

Two drawbacks of the proposed2-step iterative relaxation
method can be identified: a) it will have slow convergence
similar to that of Jacobi iterative method, but a great deal
of parallelism is obtained in exchange; and b) computing the
global solution requires a single synchronization per iteration.
Among other advantages, the proposed FEM-SES method does
not require special numbering, no global coefficient matrixis
built, uses the same information as the classic FEM, and good
scaling is expected considering that the element connectivity
is almost constant as the problem dimensions grows.

III. R ESULTS AND CONCLUDING REMARKS

A 2D electrostatic coaxial cable problem (see Fig. 3)
was implemented to validate the new method and study its
convergence behavior. Tests were conducted on an 2.4GHz
Intel Core2 Quad processor, with 4GB of global memory and
running 64-bit Linux system. First, sequential implementations
for both traditional FEM and the proposed2-step iterative
relaxation method were done. Fig. 3 compares the FEM energy
results with those of the new FEM-SES method demonstrat-
ing good agreement of the results for different number of
unknowns; thus proving the validity of the the new method.

Next, the original mesh was refined to empirically study the
convergence scaling of the proposed method. The dotted line
in Fig. 4 represents a reference linear scaling (1:1 slope) and
the solid line shows the iteration count results. These results
empirically prove a sub-linear iteration scaling of the proposed
FEM-SES method as the number of unknowns increases,
which is a desirable scaling property of iterative methods.

Considering that recently manycore (i.e. graphic processing
units-GPUs) processors have become an important computing
resource available in almost all computing systems, which
have demonstrated significant speedup of important scientific
kernels [2], a straight forward GPU version of the proposed
method was implemented using an NVIDIA GT 8800, an

Fig. 3. Energy comparison for the classic FEM and the proposed FEM-SES.

Fig. 4. Iterations scaling with the increase of problem size.

early generation CUDA [7] enabled GPU. This GPU has
14 streaming processors (SM) each with 8 scalar processors
clocked at 1.5GHz and 512MB of global memory. A speedup
of up to 13 was obtained with respect to a sequential version
on the CPU referred above demonstrating the potential of the
proposed method for parallel manycore computing.

This work presents a new element-based solution approach
for FEM called FEM-SES, that uses the same information
as the classic FEM, while exposing low level parallelism
well suited for modern manycore-GPU processors. The results
shown prove the validity of the method for electrostatic
boundary value EM problems and its potential for manycore
parallelism with up to 13 speedup of a GPU implementation
over a sequential CPU implementation. In the extended work
both sequential and GPU implementation details will be given
as well as further optimized results and comparisons.

REFERENCES

[1] D. Fernández, D. Giannacopoulos and W. J. Gross, “Multicore accel-
eration of CG algorithms using blocked-pipeline-matchingtechniques,”
IEEE Trans. on Mag., vol.46, no.8, pp. 3057–3060, 2010.

[2] M. Mehri Dehnavi, D. Fernández and D. Giannacopoulos, “Finite element
sparse matrix vector multiplication on GPUs,”IEEE Trans. on Mag.,
vol.46, no.8, pp. 2982–2985, 2010.

[3] T. Itoh, et. al., Finite Element Software for Microwave Engineering,
Wiley-Interscience, New York, 1996, pp. 385-400.

[4] A. Takei, et. al., “Full Wave Analyses of Electromagnetic Fields With an
Iterative Domain Decomposition Method,”IEEE Trans. on Mag., vol.46,
no.8, pp. 2860–2863, 2010.

[5] L. Yuanqing and Y. Jiansheng, “A finite element domain decomposition
combined with algebraic multigrid method for large-scale electromagnetic
field computation,”IEEE Trans. on Mag., vol.42, no.4, pp. 655–658, 2006.

[6] J. P. A. Bastos and N. Sadowski, “A new method to solve 3-d magne-
todynamic problems without assembling an Ax=b system,”IEEE Trans.
on Mag., vol. 46 no. 8, pp. 3365–3368, 2010.

[7] NVIDIA CUDA, http://developer.nvidia.com/object/cuda.html.


